Comparative Education

France has a highly organized educational system, which is divided into primary, secondary and tertiary (college) education. Primary and secondary education is usually imparted at public schools although a strong network of private schools also exists. All educational programs in France are regulated by the Ministry of National Education. Schooling in France is mandatory as of age 6, the first year of primary school while secondary education consists of college for the first four years after primary school and the lycee for the next three years.The baccalaureat is the end-of-lycee diploma that students must attain and is comparable to British A-Levels and American SATs. Students have a choice of sitting for the baccalaureat general which is divided into 3 streams of study, the baccalaureat technologique or baccalaureat professionnel. Higher education is funded by the state and fees are very low. Students from low-income families can also apply for scholarships.Academic councils called academies are responsible for supervising all aspects of University education in a given region.The aim of this paper is to present this evolution from the French viewpoint with some interest to compare with foreign experiences. We present this evolution through two perspectives: the curricular evolution and the place ofinvestigation.Briefly, we can observe through the French national curriculum a phase of Epistemological delimitation, followed by a phase of activities definitions, arriving, recently, to a phase of activities defined as applied sciences without poor link to the initial epistemological definition.Over these factual dimensions, we can analyze this evolution as the weakness of the knowledge meaningful expressed in the national curriculum, weakness that reinforce the weakness of the TE in front of other subjects as math, literature, foreign language… Many works tried to analyse this particular approach but their audience never really get out the little sphere of TE investigators. A birthday is more the occasion to open perspective and project some ideas and the experience taught us that the position of TE is more a question of social positioning through the knowledge than a question of purposed activities’ interest.1. CURRICULUM EVOLUTION IN FRANCE The aim of this paper is to present you some aspects about Technology Education in the French school. French schooling has two levels. Primary school starts at the age of three and lasts until the age of eleven, in three cycles: the initial learning cycle (children three to five years old), the basic learning cycle (five to eight years), and the fundamental learning cycle (eight to eleven). Secondary school is divided into two main cycles: middle school (ages eleven to fifteen) and high school (fifteen to eighteen for general education or fifteen to nineteen for vocational training).Technology education was implemented at each of these two levels in the early eighties. 1. 1 THE FIRST CURRICULUM 1. 1. 1 Some elements about the general background The main idea of French schooling is the progressive elaboration of the different school subjects. Understanding the world of children goes hand in hand with organizing that world in different knowledge areas, from the general view to the particular description given by the different subjects. Technology education, like that of science, history, or geography, appears as a school subject specific to the middle school level (Ginestie, 2001a).The second idea of French schooling is the concept of project pedagogy. The introduction of this pedagogy in the Eighties was a departure from a traditional idea that the academic and dogmatic transmission of knowledge is the sole approach to teaching. Under the pressure of a massive rise in number pupils in middle and high schools, project pedagogy was presented as a possible solution to meeting the needs of the diversity of pupils, addressing their individual needs, and developing pupil autonomy (Ginestie, 2002).It was in this context, in 1985, that technology education was introduced in France as a part of science and technology education in elementary schools, as a new subject for all pupils in middle schools and as an optional subject in high schools. We can note four stages of organization of technology education between 1985 and today. 1. 1. 2 1985-1991: the implementation of the first curriculum Technology education was conceived of as a new subject and took the place of MTE (manual and technical education) in terms of hours, classrooms, and teachers.The curriculum emphasized the industrial environment, leaving little room for home economics and craftsmanship (COPRET, 1984). It had two different elements that made these references plain. On the one hand, the general part of the course described the overall goals, context, and aims of technology education in France. The aims were in terms of pupils’ attitudes towards technology (as related in many papers, e. Vries, 1994; Jones, 1997; Compton & Jones, 1998; Gardner & Hill, 1999; Dugger, 2000) and in terms of the social and professional world of industrial production (this idea can also be found in many papers all over the world, e. g. Kantola et al. , 1999). It offered a broad perspective to prepare pupils for professional training. At that time, the middle school became the intermediate cycle where pupils had to make their own personal plan for school, and technology education was responsible for indicating possible career choices. On the other hand, general goals were broken down into concepts and skills.This second element of the curriculum described the organization of concepts based on four domains of reference: mechanical construction, electrical construction, and economics management and computer science. Clearly, the chosen references oriented technology education in Jacques Ginestie Analyzing Technology Education the world of industry towards electro-mechanical production, to the exclusion of other possibilities (Ginestie, 2001b). The main problem in introducing the TE curriculum has been to link the general aims to the specific fields (Sanders, 1999; Ginestie, 2004).These difficulties appeared with in-service teacher training programs. Earlier, the French Ministry of Education strongly affirmed the principle that TE was not a compendium of a little mechanics, a little electronics, and a business management with different aspects of computer science as a binder. To link these subjects together, teachers have had to connect general aims and specific concepts into an overall pedagogical project (Ginestie, 2005). Many in-service teacher training programs develop this orientation rather than aiming simply for the acquisition of specific knowledge.The implementation of technology education has not been reduced to the simple substitution of cooking or handicraft lessons by lessons in mechanics, but the true construction of a “new world” (Ginestie, 2003). Many original curriculum experiments were conducted at the same time to develop new teaching approaches (differential pedagogy, autonomous work, cooperative work, personal projects, etc. ) and to integrate the new references to industry, the market economy, and new labor organizations by taking into account the needs, design, production, marketing, use, and rationale of industrial methods.The major plan was to combine the pedagogical project with a theoretical industrial project method (IPM). We can note comparable initiatives in the UK at the same time (e. g. Hennessy & Murphy 1999). 1. 2 THE CURRICULUM EVOLUTIONS 1. 2. 1 1992-1999: Introduction of the Industrial Project Method (IPM) At the beginning of the Nineties, IPM appeared to be a good solution for implementing TE in the middle schools. Certainly, IPM has taken an overwhelming place in TE leaving no other alternatives for organizing technology education courses.This position was made official with different additions and modifications to the initial curriculum. The main decision to use IPM was published in 1992 by the French Ministry of Education. This method allows for the simultaneous definition of content and method for organizing the teaching learning process in TE. Everything was done so that each TE teacher plans and organizes a new project each year for each group of pupils. 1. 2. 2 1999-2004: The second curriculum Three problems arose that reduced the role of the project in TE.First, projects were mainly single production projects without any real progression from one year to the next. Secondly, the teachers’ profile evolved considerably during this period, with a large increase in new graduates from the advanced technological universities. Thirdly, the union of industrial science and technique, with teachers exerting pressure to open the curriculum to new technologies and new patterns of labor organization. The implementation of the new curriculum took four years, from 1996 until 1999.These changes tried to organize the relationship between the respective roles of the project and the concepts. For the first three years of middle school, pupils have to make different modules of the whole project, but they do not have to make all of it. The teacher’s task is to focus the attention of the pupils on specific points. During the last year, the pupils have to do a complete project (Ginestie, 2001c). The IPM is always a very strong frame of reference for TE in middle school (Ginestie, 2002). 1. 2. 3 2005: And so long, another change.There is actually a new phase of curriculum change. The Ministry of Education wants to promote the pupils individual choices about their future and by consequences the study they have to do. We can observe a real reduction of the TE as general and Jacques Ginestie Analyzing Technology Education Page 3 cultural subject. The general aspects are more and more developed as applications of sciences; the general method is not the process of design and technology but more and more the process of observation and experimentation (as we can find it in sciences education).The main knowledge properly identified as technological knowledge is banished and the first draft of this new curriculum promote the links with the scientific knowledge. The IPM is still a reference but it is more an object to study more than a method to use with pupils. 2. CONDITIONS OF STUDY IN TECHNOLOGY EDUCATION As we can see briefly, the TE curriculum is unstable as we can note through these major changes since the first writing.These changes are not linked with the technological evolution but mainly due to the lack of understanding about the place of TE in the general systems and to the misunderstanding about the aims of this subject and the knowledge taught. This lack of knowledge’s definition is patent when we observe the structure of the curriculum. This question of knowledge is not so easy to solve. Entry through analysing the conditions of study about TE’s knowledge supposes, in terms of questions for research, a strong agreement with two points: o There is some thing to study in technology education;o There would be multiple study conditions, perhaps different. These two points don’t make evidence. A majority of opinion is that TE is simply a kind of mix between handicraft activities and elements to highlight vocational training choices (Ginestie, 2000; Chatoney, 2003; Brandt-Pomares, 2003). In this posture, all the knowledge comes from sciences and TE is only a question of activities or applications. Evidently, this kind of entry weakens the position of TE as school subject and the recent French evolutions must be understood like this.It is the radical opposite we choose to work in our laboratory. First orientation we choose is to understand the significance of the anthropological approach. 2. 1 THE ANTHROPOLOGICAL APPROACH The anthropological approach allows registering knowledge in a theory of the activity and in a social field identified. The articulation between task and activity is incomplete if we do not speak about the manner to make. The manner to make relieves of the technique employed by the person to realise the task, that it is appointed by the situation or by him.